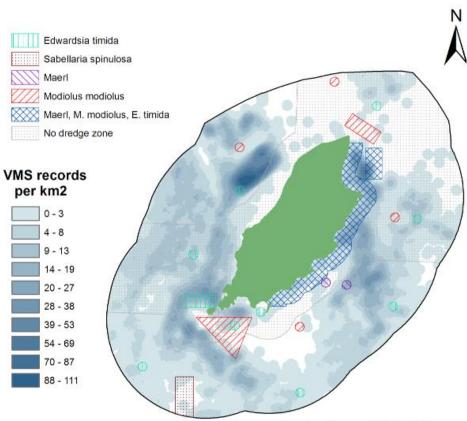
Seabed recovery on scallop grounds

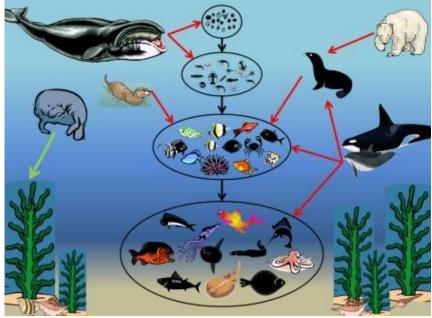
Quantifying recovery rates and resilience of seabed habitats impacted by bottom fishing

Gwladys I. Lambert, Simon Jennings, Michel J. Kaiser, Thomas W. Davies and Jan G. Hiddink Journal of Applied Ecology, 2014, doi: 10.1111/1365-2664.12277



Scallop fishery

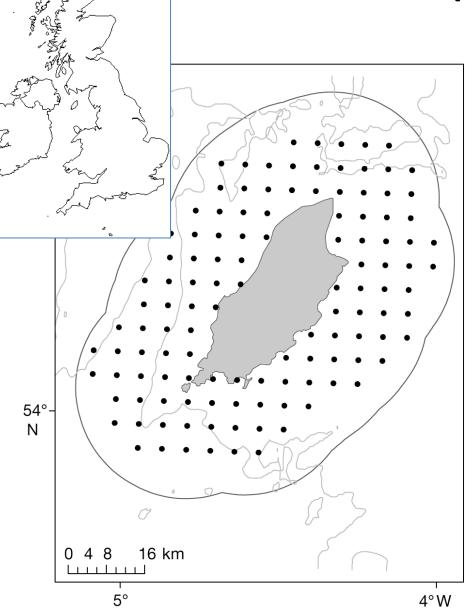
Destructive fishery



0 5 10 20 Kilometres

Ecosystem Approach to Fisheries – Habitat

• Can the seabed recover from dredging/trawling?


 Which non-target species are mostly affected?

http://www.nefsc.noaa.gov/psb/NOEPS/NOEPSlessons.html#FW

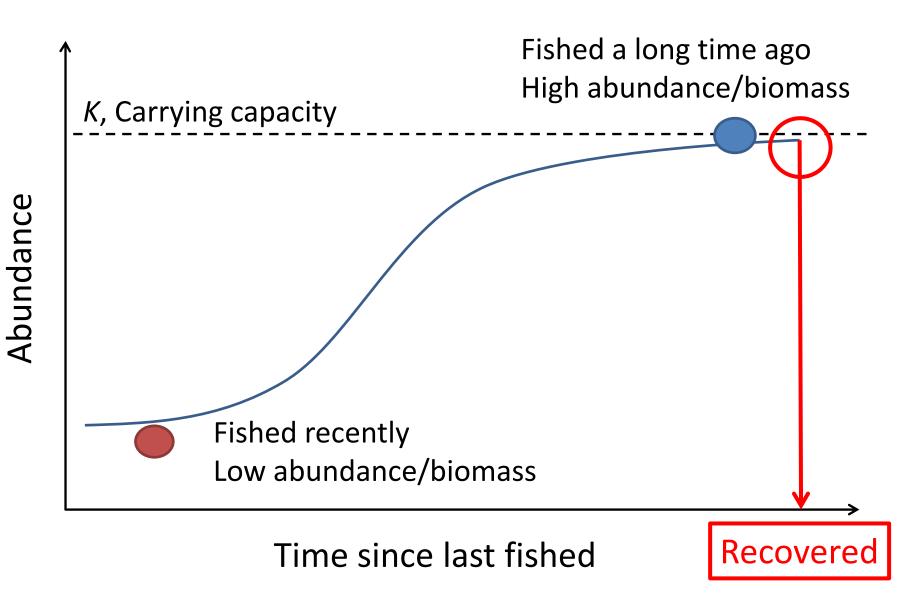
How long does it take for the habitat to recover?

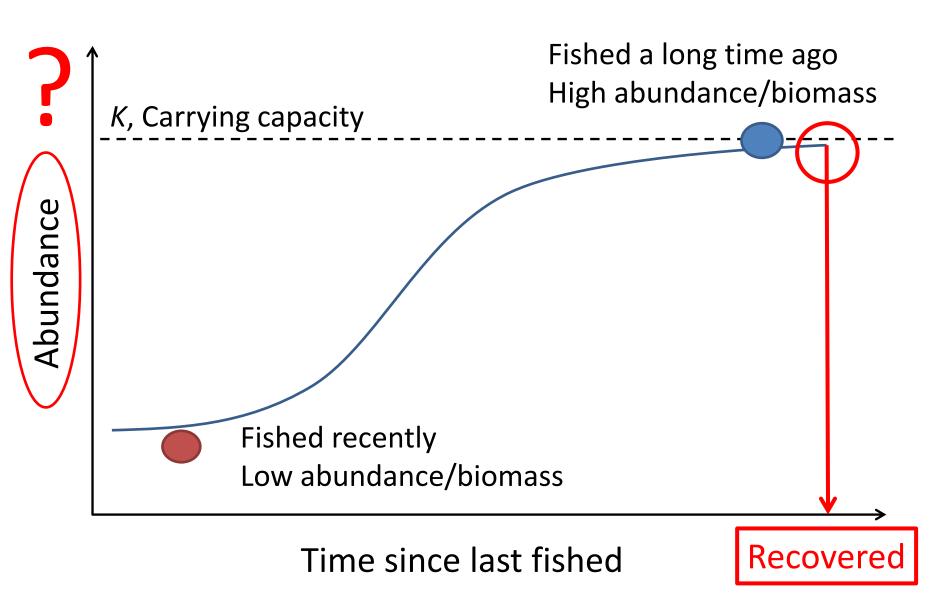
HabMap Survey

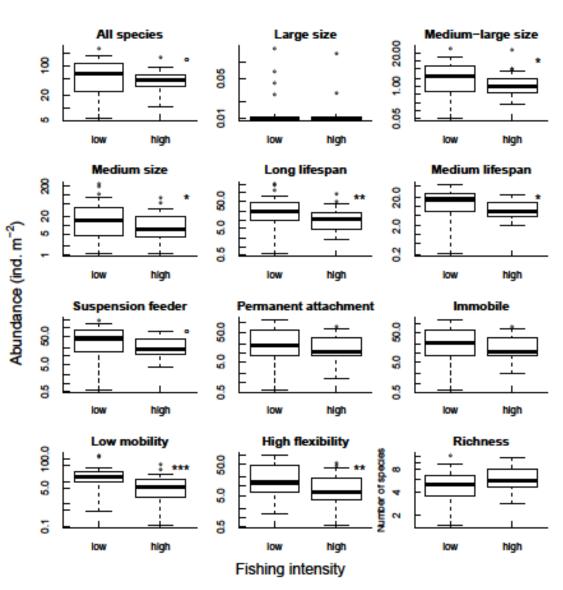
4

HabMap survey, Isle of Man – 2008 – Bangor University, Defa

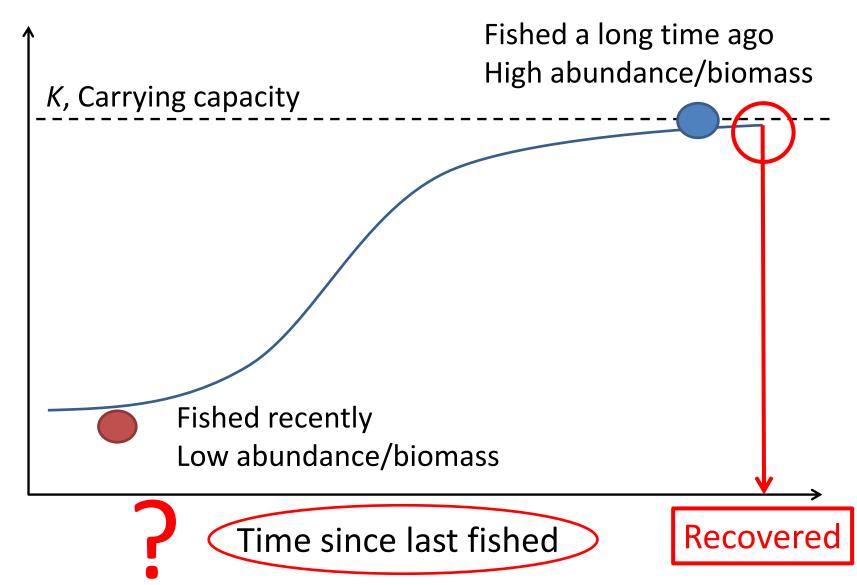
HabMap Survey






Theory

Theory


Defining sensitive traits in study area

Sensitive traits to fishing:

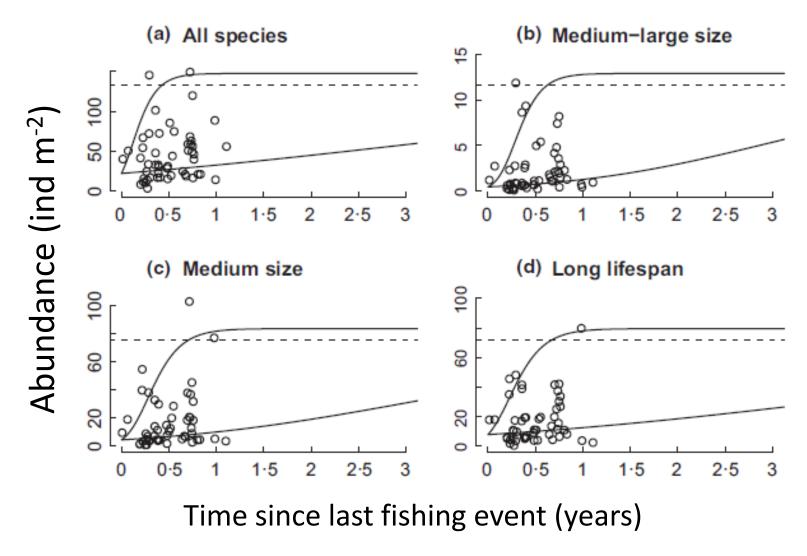

- Medium large size (21-50cm)
- Medium size (11-20cm)
- Long life span (>5yrs)
- Medium lifespan (3-5yrs)
- Suspension feeders
- Low mobility species
- High flexibility species

Theory

Abundance

Finding last fishing event

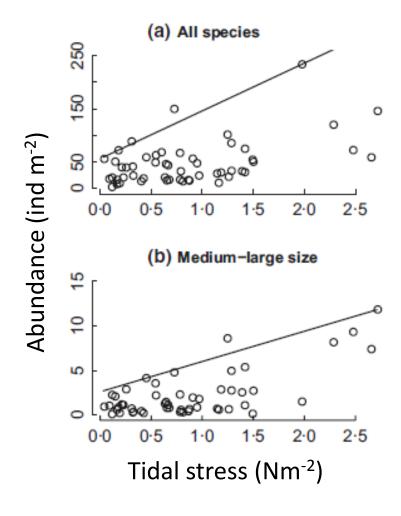
Model


Recovery equation:

$$N = N_{t=0} / [N_{t=0} / K + e^{-rt} (1 - N_{t=0} / K)]$$

Parameters:

² - *K* - Carrying capacity - Fixed or variable scenarios *Nt=0* – Abundance at time 0 - intercept or random intercept (mixed effect model) -> Fishing intensity Model -> Substratum type selection *r* – Growth parameter - dependent on environmental covariate -> r = ax + b, with x = tide, surrounding abundance or wave stress


Results – Scenario 1 - FIXED K

Here scale is 1km²

Results – Scenario 2 – VARIABLE K

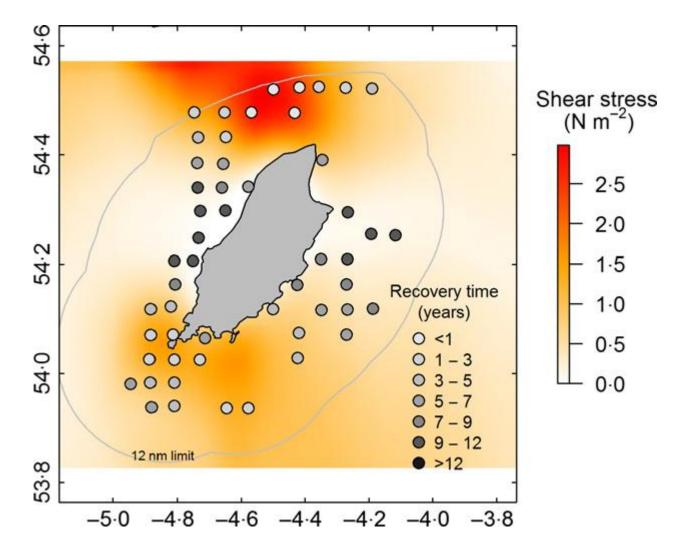
1) Define K

2) Model recovery

Here scale is 1km²

Results – Parameters and recovery estimates

Response	Group	Scale (km ²)*	$Model^{\dagger}$	Covariate ^{†‡}	Random covariate [†]	$N_t = 0$ (individuals m ⁻²) [¶]	K^{\P}	$r (\times 10^{-3})$ $(day^{-1})^{\ddagger}$	ΔAIC^{\S}	t_R (years) [‡]
Abundance (fixed K models)	All species	0.25	Mixed	Tidal velocity	Substratum	$18{\cdot}29\pm2{\cdot}24$	147.63	0.97-29.37	14.15	0.3-9.1
	-	0.5	Nls	Tidal velocity		13.38	147.63	1.67 - 18.46	17.75	0.5-5.6
		1	Mixed	Tidal velocity	Substratum	22.02 ± 3.47	147.63	0.76-19.90	15.86	0.4 - 11.2
	Medium-large size spp.	0.25	Mixed	Tidal velocity	Fishing intensity	0.32 ± 0.02	12.90	1.5-45.43	18.38	0.3-7.8
		0.5	Mixed	Tidal velocity	Substratum	0.57 ± 0.3	12.90	1.76 - 16.65	21.66	0.6-6.2
		1	Mixed	Tidal velocity	Substratum	0.44 ± 0.03	12.90	1.69 - 17.88	14.24	0.6-6.6
	Medium size spp.	0.25	Nls	Tidal velocity		3.15	83.32	1.35 - 22.06	9.50	0.5-7.9
		0.5	Nls	Tidal velocity		2.55	83.32	2.24-13.97	14.94	0.8 - 4.9
		1	Mixed	Tidal velocity	Substratum	4.44 ± 1.25	83.32	1.23 - 14.46	12.84	0.7 - 8.2
	Long life span <i>spp</i> .	0.25	Mixed	Tidal velocity	Substratum	7.22 ± 2.13	79.51	0.66-35.35	8.59	0.3->12
		0.5	Mixed	Tidal velocity	Substratum	7.14 ± 1.91	79.51	0.97-12.49	9.71	0.8-9.7
		1	Mixed	Tidal velocity	Substratum	7.84 ± 2.53	79.51	0.80 - 13.90	10.67	0.7 - 11.6
	Medium life span <i>spp</i> .	0.25	Mixed	Tidal velocity	Substratum	5 ± 0.47	41.64	0.57-59.84	18.08	0.2->12
		0.5	Mixed	Tidal velocity	Substratum	4.76 ± 0.66	41.64	0.85-42.19	24.35	0.2 - 10.7
		1	Mixed	Tidal velocity	Substratum	5.19 ± 0.56	41.64	0.62 - 50.55	22.73	0.2->12
	Suspension feeding spp.	0.25	Mixed	Tidal velocity	Fishing intensity	6.69 ± 0.75	100.80	1.82 - 23.01	12.20	0.4-5.4
		0.5	Nls	Tidal velocity		5.92	100.80	2.65 - 14.54	17.37	0.7-3.8
		1	Nls	Tidal velocity		8.05	100.80	1.88 - 15.40	12.80	0.6 - 5.1
	High body flexibility spp.	0.25	Mixed	Tidal velocity	Fishing intensity	3.63 ± 0.43	61.92	0.91-21.71	13.61	0.5 - 11
		0.5	Nls	Tidal velocity		2.48	61.92	2.00 - 18.13	22.65	0.6-5.3
		1	Mixed	Tidal velocity	Fishing intensity	4.27 ± 0.58	61.92	0.94-17.17	18.61	0.6 - 10.5
	Low mobility spp.	0.25	Nls	Tidal velocity		3.18	42.35	0.36-167.4	10.16	0.1->12
		0.5	Mixed	Tidal velocity	Substratum	4.63 ± 0.93	42.35	0.07-639.97	9.77	0->12
		1	Mixed	Tidal velocity	Substratum	4.61 ± 1.04	42.35	0.07-596.73	10.72	0->12
Relative abundance	All species	0.25	Nls	None		14.79	100.00		5.21	2.5
(variable K models)		0.5	Nls	None		14.57	100.00		7.04	2.3
		1	Nls	None		16.98	100.00		5.33	2.7
	Medium-large size spp.	0.25	Nls	Abundance		7.55	100.00	2.67 - 4.00	3.13	2.7-4
		0.5	Nls	Wave		7.88	100.00	3.19-13.49	12.82	0.8-3.3
		1	Nls	Wave		6.18	100.00	3.77 - 15.52	17.73	0.7 - 2.9
	Medium life span spp.	ALL	Null model is better							
	High body flexibility spp.	0.25	Nls	None		10.39	100.00	2.76	12.82	3.6
		0.5	Nls	Wave		7.99	100.00	3.59-12.68	17.73	1-2.9
		1	Nls	Wave		8.35	100.00	3.31–14.37	12.82	0.9-3.1


Zoom on results – Recovery estimates – Abundance (0.25km²)

Species group	Recovery time
All species	0.3 - 9.1
Medium – large size species	0.6 - 6.2
Medium size species	0.5 – 7.9
Long life span species	0.3 - >12
Medium life span species	0.2 - >12
Suspension feeding species	0.4 - 5.4
High body flexibility species	0.5 - 11
Low mobility species	0.1 - >12

Zoom on results – Recovery estimates – Relative abundance (0.25km²)

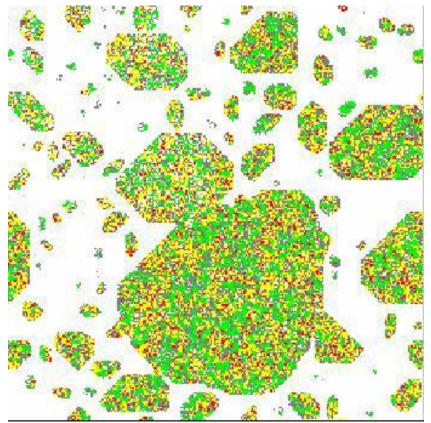
Species group	Recovery time	r covariate
All species	2.5 (0.3 – 9.1)	None
Medium – large size species	2.7 – 4 (0.6 – 6.2)	Local abundance
Medium life span species	NA	
High body flexibility species	3.6 (0.5 – 11)	None

Results – Mapping out sensitivity for management

- Do not close areas of high effort if it will be displaced to more sensitive areas
- If closing areas of low K and/or long recovery rates maybe won't be successful
- If local abundance is important for recovery close areas of potentially high abundance and/or quick recovery
- If rotational fishery is an option fish in areas which recover quicker and close them for recovery as long as needed
- Best practice for scallop ground habitat management?
 - Forget about areas of low K/ long recovery rates
 - Permanently close several small areas of potentially high K
 - Rotate fishery in areas of fast recovery potential

- Do not close areas of high effort if it will be displaced to more sensitive areas
- If closing areas of low K and/or long recovery rates maybe won't be successful
- If local abundance is important for recovery close areas of potentially high abundance and/or quick recovery
- If rotational fishery is an option fish in areas which recover quicker and close them for recovery as long as needed
- Best practice for scallop ground habitat management?
 - Forget about areas of low K/ long recovery rates
 - Permanently close several small areas of potentially high K
 - Rotate fishery in areas of fast recovery potential

- Do not close areas of high effort if it will be displaced to more sensitive areas
- If closing areas of low K and/or long recovery rates maybe won't be successful
- If local abundance is important for recovery close areas of potentially high abundance and/or quick recovery
- If rotational fishery is an option fish in areas which recover quicker and close them for recovery as long as needed
- Best practice for scallop ground habitat management?
 - Forget about areas of low K/ long recovery rates
 - Permanently close several small areas of potentially high K
 - Rotate fishery in areas of fast recovery potential


- Do not close areas of high effort if it will be displaced to more sensitive areas
- If closing areas of low K and/or long recovery rates maybe won't be successful
- If local abundance is important for recovery close areas of potentially high abundance and/or quick recovery
- If rotational fishery is an option fish in areas which recover quicker and close them for recovery as long as needed
- Best practice for scallop ground habitat management?
 - Forget about areas of low K/ long recovery rates
 - Permanently close several small areas of potentially high K
 - Rotate fishery in areas of fast recovery potential

- Do not close areas of high effort if it will be displaced to more sensitive areas
- If closing areas of low K and/or long recovery rates maybe won't be successful
- If local abundance is important for recovery close areas of potentially high abundance and/or quick recovery
- If rotational fishery is an option fish in areas which recover quicker and close them for recovery as long as needed
- Best practice for scallop ground habitat management?
 - Forget about areas of low K/ long recovery rates
 - Permanently close several small areas of potentially high K
 - Rotate fishery in areas of fast recovery potential

- Do not close areas of high effort if it will be displaced to more sensitive areas
- If closing areas of low K and/or long recovery rates maybe won't be successful
- If local abundance is important for recovery close areas of potentially high abundance and/or quick recovery
- If rotational fishery is an option fish in areas which recover quicker and close them for recovery as long as needed
- Best practice for scallop ground habitat management?
 - Forget about areas of low K/ long recovery rates
 - Permanently close several small areas of potentially high K
 - Rotate fishery in areas of fast recovery potential

Testing management scenarios

- Depletion-recovery equations
- Spatially explicit models

Some conclusive remarks

- Importance fishing activity distribution
- Recovery rates for implementation of EAF
- Here, variation of recovery with tidal stress
- Limitations: unfished is not pristine + focus on abundance and not biomass

THANK YOU FOR YOUR ATTENTION